SAN FRANCISCO, August 2022 - What if my data is already in order? Stream processing has given us an elegant and powerful solution for running analytic queries and logic over high volumes of continuously arriving data. However, in both Apache Flink and Apache Beam, the notion of time-ordering is baked in at a very low level, making it difficult to express computations that are interested in a semantic-, rather than time-ordering of the data.
In financial services, what often matters the most about the data moving between systems is not when the data was created, but in what order, to the extent that many institutions engineer a global sequencing over all data entering and produced by their systems to achieve complete determinism. How, then, can financial institutions and others best employ stream processing on streams of data that are already ordered? We cover various techniques that can make this work.